تحلیل فضایی _ مکانی تابش دریافتی سطح استان کرمانشاه و مکانیابی سایت‌های خورشیدی

نوع مقاله: علمی پژوهشی وزارت علوم

نویسندگان

1 دانشیار گروه جغرافیا) اقلیم شناسی (، دانشگاه رازی؛ کرمانشاه، ایران

2 استادیار گروه جغرافیا) اقلیم شناسی (، دانشگاه رازی؛ کرمانشاه، ایران

3 دانش آموخته دکتری اقلیم شناسی، گروه جغرافیا، دانشگاه رازی؛ کرمانشاه، ایران

چکیده

اطلاع دقیق از شدت تابش کل دریافتی خورشید در یک مکان برای گسترش پروژه‌های خورشیدی ضروری است. به همین دلیل برآورد تابش از اصلی‌ترین فاکتورها برای مکانیابی سایت خورشیدی می‌باشد. در تحقیق حاضر به وسیله مدل لیو و جردن مقدار تابش دریافتی برآورد شده و با در نظر گرفتن لایه‌های مختلف از جمله شیب و جهت شیب، ارتفاع، دما و رطوبت و با استفاده از مدل AHP مکان‌بهینه تعیین گردید. با توجه به نتایج مدل لیو و جردن استان کرمانشاه بررسی شد و نتایج نشان داد که به طور متوسط در طی روز  495 کالری در سانتیمتر مربع انرژی خورشیدی دریافت می­نماید. 4 شهرستان شامل سنقر، صحنه، اسلام آباد و جوانرود و بدنبال ان شهرستان قصر شیرین به ترتیب بیشترین و کمترین میزان تابش را دریافت می­کنند. مقدار متوسط تابش روزانه در شهرستان جوانرود و قصر شیرین به ترتیب  معادل 528 و 443 کالری در سانتیمتر مربع می­باشد. بر اساس نتایج مکانیابی نیز شهرستان‌ کرمانشاه با مساحت­های 908 کیلومتر مربع بیشترین مطلوبیت برای گسترش سایت خورشیدی را دارند و سرپل‌ذهاب با 118 کیلومتر مربع مساحت کمترین پتانسیل را دارد. quot; در وقوع فرسایش و تولید رسوب می­باشد که در این میان زیرحوضه­های دهبکر، بنگوین، قزلجه، مرانه، میرسه و سیاه­قل دارای پتانسیل بیشتری هستند.

کلیدواژه‌ها


  1. Almorox, J., Hontoria, C., 2004, Global Solar Radiation Estimation Using Sunshine Duration in Spain, Energy Conversion and Management, Vol. 45, No. 9-10, pp. 1529–1535.
  2. Angstrom, A., 1924, Solar and Terrestrial Radiation, Quart. J. Roy. Met. Soc., Vol. 50, pp. 121–125.
  3. Belcher, B. N., DeGaetano, A. T., 2007, A Revised Empirical Model to Estimate Solar Radiation Using Automated Surface Weather Observations, Solar Energy, Vol. 81, No. 3, pp. 329–345.
  4. Bird, R. E., and Hulstrom, R. L., 1981, A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces, Technical Report, Solar Energy Research Institute, Golden, Colorado, SERI/TR-642-761.
  5. Chen, R., K. Ersi, S. Lu. Yang and W. Zhao, 2004, Validation Of Five Global Radiation Models With Measured Daily Data In China, Energy Conversion and Management, Vol. 45, PP. 1759–1769.
  6. Chen, R.; Kang, E.; Lu, S.; Yang, J.; Ji, X.; Zhang Z. and Zhang, J., 2006, New Methods to Estimate Global Radiation Based on Meteorological Data in China, Energy Conversion and Management, Vol. 47, No. 18-19, pp. 2991–2998.
  7. Cooper, P.I., 1969, The Absorption of Solar Radiation in Solar Sills, Solar Energy, Vol. 12, pp. 333-346.
  8. Danny, H.W., Ernest, Li., Tsang, K.W., Cheung, K.L., Tam, C.O., 2010, An Analysis of Light-Pipe System Via Full-Scale Measurements, Applied Energy, Vol. 87, No. 9, pp. 799-805.
  9. Davies, J. A., McKay, D. C., Luciani, G., Abdel-Wahab, M., 1988, Validation of Models for Estimating Solar Radiation on Horizontal Surfaces, IEA Task IX, Final Report, Atmospheric Environment Service of Canada, Downsview, Ontario, Canada.
  10. Dincer, I., 2000, Renewable Energy and Sustainable Development: A Crucial Review, Renewable and Sustainable Energy Reviews, Vol. 4, No. 2, pp. 157-175.
  11. Duffie, J.A., Beckman, W.A., 2006, Solar Engineering of Thermal Processes, John Wiley & Sons, 3nd Edition, New York, U.S.A.
  12. Ettah1, E. B. Udoimuk, A. B. Obiefuna, J. N. Opara, F. E. 2012, The Effect of Relative Humidity on the Efficiency of Solar Panels in Calabar, Nigeria, Universal Journal of Management and Social Sciences, Vol. 2 , pp. 8-11.
  13. Hottel, H. C. and A. Whillier., 1958; Evaluation of Flat-Plate Solar Collector Performance, Transcaction of Conference on the Use of Solar Energy, II: 74–104.
  14. Iziomon, M.G., Mayer, H., 2002, Assessment of Some Global Solar Radiation Parameterizations, Atmospheric and Solar-Terrestrial Physics, Vol. 64, No 2, pp. 1631–1643.
  15. Kazemi Karegar, H., Zahedi, A., Ohis, V., taleghani, G., Khalaji, M., 2014, Wind and Solar Energy Developments in Iran, available at: http://www.itee.uq.edu.au/ ~aupec/aupec02/Final-Papers/ H-Kazemi1.pdf. Accessed: August 15, 2014.
  16. Kasten, H., 1966, A new table and approximation formula for the relative optical air mass, Archiv fur MeteorolGeophys und Bioklim, p. 206–223.
  17. Leckner, B., 1978, The Spectral Distribution of Solar Radiation at the Earth’s Surface-Elements of a Model, Solar Energy, Vol. 20, No. 2, pp. 143–150.
  18. Liu, B.; Jordan, R., 1961, Daily Insolation on Surfaces Tilted Towards Equator, Solar Energy- Resources & Availability, Vol. 10, pp: 1-10.
  19. Menges, H.O., C. Ertekin, Sonmete, M., H., 2006, Evaluation of Global Solar Radiation Models for Konya, Energy Conversion and Management, Vol. 47, pp. 3149–3173.
  20. Moghadam, H., Farshchi Tabrizi, F., Zolfaghari Sharak, A., 2011, Optimization of Solar Flat Collector Inclination, Desalination, Vol. 256, No. 1-3, pp. 107-111.
  21. Prescott, J. A., 1940, Evaporation from a Water Surface in Relation to Solar Radiation, Trans. R. Soc. South Aust., Vol. 64, pp. 114–118.
  22. Reddy, S. J., 1971, An empirical method for the estimation of the total solar radiation, Solar Energy, Vol. 13, p: 289.
  23. Sabbagh, J. Sayigh, A. A. M., Al-Salam, E. M. A., 1977, Estimation of the Total Solar Radiation From Meteorological Data, Solar Energy, Vol. 19, pp. 307-311.
  24. Sabziparvar, A. A. 2008, A simple formula for estimating global solar radiation in central arid deserts of Iran, Renewable Energy, Vol. 33, pp. 1002–1010.
  25. Swartman, R. K., Ogunladeo, 1967, Solar radiation estimates from common parameters, Solar Energy , Vol.11, pp. 170-172.