ارزیابی روش توموگرافی مقاومت ویژه الکتریکی و الکترومغناطیس با بسامد بسیار پایین در شناسایی کارست مدفون در ناهمواری‌های شاهو (غار قوری‌قلعه)

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، دانشگاه رازی، کرمانشاه، ایران

2 عضوهیات علمی

3 عضو هیئت علمی

چکیده

کارست و حفره‌های کارستی یکی از چالش برانگیزترین موضوعات می‌باشد. با توجه به اینکه مناطق کارستی تقریباً 20% از مساحت زمین را پوشش می‌دهند، شناسایی و بررسی موقعیت حفره‌های کارستی می‌تواند در حوزه‌های گوناگونی مانند توسعه گردشگری، جلوگیری از فرونشست و منابع آب کارستی مفید باشد. در ناهمواری‌های شاهو واقع در استان کرمانشاه لندفرم‌های کارستی از جمله غارها و حفره‌های مدفون به‌خوبی توسعه‌یافته‌اند. این پژوهش با هدف شناسایی سریع و اولیه حفره‌های کارستی مدفون با استفاده از یک روش آسان و کم‌هزینه در مطالعات ژئومورفولوژی، بررسی مورفولوژی و برآورد ابعاد این حفره‌ها انجام شده است. بدین منظور در ناهمواری‌های شاهو (غار قوری قلعه و محیط اطراف آن)، دو روش ژئوفیزیکی توموگرافی مقاومت ویژه الکتریکی (ERT) و الکترومغناطیس با بسامد بسیار پایین (VLF) مورد استفاده و مقایسه با هم قرار گرفت. ابتدا با تعیین موقعیت غار در سطح زمین، مسیر برداشت پروفیل‌ها به‌صورت عمود بر مسیر غار نیز طراحی نیز گردید. سپس 5 پروفیل به روش VLF و 4 پروفیل به روش ERT برداشت شد. 4 پروفیل ERT عمود بر پروفیل‌های شماره 4،2 و 5 VLF برداشت و در نهایت نتایج حاصل از دو روش ژئوفیزیکی مذکور باهم مقایسه شدند. نتایج حاصل از هر دو روش علاوه بر تعیین موقعیت دقیق غار، بی‌هنجاری‌های را خارج از محدوده‌ غار نیز شناسایی کردند که می‌تواند حاکی از گسترش غار یا وجود حفره‌های احتمالی دیگر در اطراف آن باشد. از دیگر یافته‌های تحقیق می‌توان به امکان دستیابی سریع به نتایج و ارزان بودن استفاده از روش VLF نسبت به سایرروش‌های شناسایی اشاره نمود.

کلیدواژه‌ها


1- افراسیابیان، احمد (1372): مطالعات هیدرولوژی کارست در حوضه آهکی مهارلو، دومین سمینار علمی مطالعات منابع آب، مجموعه مقالات، صص 137-126.
2- شکوه سلجوقی، بشیر و هزارخانی، اردشیر، (1393): اکتشاف آب‌های زیرزمینی توسط مدل‌سازی معکوس داده‌های مقاومت ویژه، مجموعه مقالات شانزدهمین کنفرانس ژئوفیزیک ایران، 20 تا 23 اردیبهشت‌ماه، صص 284-280.
3- صفاری، امیر، ملکی، امجد، شیرزادی تبار، فرزاد، احمدآبادی، علی، رحمتی‌پور، فاطمه (1398): تحلیل شواهد ژئومورفیک و قابلیت آن در شناسایی گسل‌های پنهان، پژوهش‌های ژئومورفولوژی کمی، سال هشتم، شماره 2، صص 121-103.
4- مراد‌زاده، علی، زارع، مهدی، دولتی ارده‌جانی، فرامرز (1391): تشخیص منطقه آلودگی از زه‌آب اسیدی با استفاده از مدل‌سازی سه‌بعدی داده‌های ژئو الکتریک در محدوده کارخانه زغال شویی البرز شرقی، مجله ژئوفیزیک ایران، جلد 6، شماره 2، صص 111-95.
5- مرادی دشت پاگردی، مصطفی، نوحه‌گر، احمد، وقار فرد، حسن، پور جنایی، علی، مجیدی، اَباذر و هنر بخش، افشین، (1393): شناسایی مناطق مناسب تشکیل مخزن‌های آب‌های زیرزمینی با استفاده از تکنیک ژئوفیزیک مطالعه موردی: حاشیه رودخانه قره‌چای، ساوه، مجله پژوهش آب ایران، شماره 15، صص 222-217.
6- ملکی، امجد، اویسی، محسن (1391): شناسایی ساختار گسلی و تحول چشمه‌های کارستی با استفاده از رادار نفوذی (مطالعهٔ موردی: استان کرمانشاه)، جغرافیا و پایداری محیط، شماره 3، صص 10-1.
7- ملکی، امجد، اویسی، محسن، باقری، آرزو (1396): بررسی قابلیت منابع آب زیرزمینی در سازند کارستی کوه خورین کرمانشاه با تکنیک GIS و روش‌های ژئوفیزیکی، جغرافیا و برنامه‌ریزی محیطی، شماره 21، صص 150-135.
8- ملکی، امجد، قبادی، محمدحسین و کریمی سلطانی، پیمان، (1394): نقش گردشگران در انحلال اشکال کارستی ثانویه درون غارها (مطالعه موردی غار علی‌صدر همدان)، جغرافیا و پایداری محیط، شماره 16، صص 15-1.
 
9- Abd El Aal, A. (2016): Length Article Identification And Characterization Of Near Surface Cavities In Tuwaiq Mountain Limestone, Riyadh, Ksa, ‘‘Detection And Treatment”, Egyptian Journal Of Petroleum, Vol. 26, Pp. 215-223.
10- Bin, L. Zhengyu, L. Shucai, L. Lichao, N. Maoxin, S. Huaifeng, S. Kerui, F. Xinxin, Zh. And Yonghao, P. (2017): Comprehensive Surface Geophysical Investigation Of Karst Caves Ahead Of The Tunnel Face: A Case Study In The Xiaoheyan Section Of The Water Supply Project From Songhua River, Jilin, China, Journal Of Applied Geophysics, 10.1016/J.Jappgeo.2017.06.013.
11- Bosch, F.P. Müller, I. (2005): Improved Karst Exploration By VLF-EM-Gradient Survey: Comparison With Other Geophysical Methods, Near Surface Geophysics, PP. 299-310.
12- Cardarelli, E. Cercato, M. Cerreto, A. And Di Filippo, G. (2010): Electrical Resistivity And Seismic Refraction Tomography To Detect Buried Cavities, Journal Of Geophysical Prospecting, Vol. 58, Pp. 685–695.
13- Carrière, S.D. Chalikakis, K. Sénéchal, G. Danquigny, C. Emblanch, C. (2013): Combining Electrical Resistivity Tomography And Ground Penetrating Radar To Study Geological Structuring Of Karst Unsaturated Zone. Journal Applied Geophysics, 94, 31–41.
14- Dahlin, T. And Zhou, B. (2004): A Numerical Comparison Of 2D Resistivity Imaging With 10 Electrode Arrays, Geophysical Prospecting, Vol.52, Pp. 379-398.
15- Ford, D. And Williams, P. (2007): Karst Hydrogeology And Geomorphology, John & Sons, Ltd.
16- Gutierrez, F. Parise, F. De Waele, J. And Jourde, H. (2014): A Reviewon Natural And Human-Induced Geohazards And Impacts In Karst, Earth-Science Reviews, Vol. 138, Pp. 61-88.
17- Kaufmann, G. Romanov, D. And Nielbock, R. (2011): Cave Detection Using Multiple Geophysical Methods: Unicorn Cave, Harz Mountains, Germany, Journals Of The Society Of Exploration Geophysicists, Vol. 76, Pp. 71-77.
18- Loke, M. (2004): 2-D And 3-D Electrical Imaging Surveys, PDF Available From Http://Www. Geoelectrical. Com.
19- Loke, M. And Barker, R. (1996): Practical Techniques For 3D Resistivity Surveys And Data Inversion1, Geophysical Prospecting, Vol. 44,  Pp. 499-523.
20- Loke, M.H. (2001): Electrical Imaging Surveys For Environmental And Engineering Studies, A Practical Guide To 2-D And 3-D Surveys: RES2DINV Manual, IRIS Instruments, Www.Iris-Instrument.Com.
21- Metwaly, M. And Alfouzan, F. (2013): Application Of 2-D Geoelectrical Resistivity Tomography For Subsurface Cavity Detection In The Eastern Part Of Saudi Arabia, Geoscience Frontiers, Vol. 4, Pp. 469-476.
22- Raeisi, E. (2002): Carbonate Karst Caves In Iran.
23- Sevil, J. Gutierrez, F. Zarroca, M. Desir, G. Carbonel, D. Guerrero, J. Linares, R. Roque, G. And Fabrega, I. (2017): Sinkhole Investigation In An Urban Area By Trenching In Combination With GPR, ERT And High-Precision Leveling, Mantled Evaporite Karst Of Zaragoza City, NE Spain, Journal Of Engineering Geology, Vol. 231, Pp. 9-20.
24- Song, K.I. Cho, G.C. Chang, S.B. (2012): Identification, Remediation, And Analysis Of Karst Sinkholes In The Longest Railroad Tunnel In South Korea, Eng. Geol. 135–136, 92–95.
25- Sung, K. Santosa, B.J. Bahri, A.S. Santos, F.M. And Iswahyudi, A. (2016): Application Of Noise-Assisted Multivariate Empirical Mode Decomposition In VLF-EM Data To Identify Underground River, World Scientific Publishing Company By UNIVERSITY OF LIVERPOOL,Vol. 8, No. 3.
26- Werkema, D.D. Atekwana, E. Sauck, W. And Asumadu, J.A. (2000): A Generic Automated/Semiautomated Digital Multi-Electrode Instrument For Field Resistivity Measurements, IEEE Transactions On Instrumentation And Measurement, Vol. 49, Pp. 1249-1253.
27- White, W.B. (2007): A Brief History Of Karst Hydrogeology: Contributions Of The NSS, J. Cave Karst Stud, Vol. 69, 13–26.
28- Zhou, B. And Greenhalgh, S.A. (2002): Rapid 2-D/3-D Crosshole Resistivity Imaging Using The Analytic Sensitivity Function, Geophysics, Vol 67, No 3, Pp. 755-765.